

ELEVENTH EDITION

Elementary Technical Mathematics

Dale Ewen
Parkland Community College

C. Robert Nelson

Champaign Centennial High School

This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed. Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. The publisher reserves the right to remove content from this title at any time if subsequent rights restrictions require it. For valuable information on pricing, previous editions, changes to current editions, and alternate formats, please visit www.cengage.com/highered to search by ISBN\#, author, title, or keyword for materials in your areas of interest.

Elementary Technical Mathematics, Eleventh Edition
 Dale Ewen / C. Robert Nelson

Product Director: Liz Covello
Senior Product Team Manager: Richard Stratton Product Assistant: Stephanie Kreuz

Media Developer: Guanglei Zhang
Associate Media Developer: Bryon Spencer
Associate Marketing Manager: Janay Pryor Content Project Manager: Ruth Sakata Corley Art Director: Vernon Boes

Manufacturing Planner: Rebecca Cross
Rights Acquisitions Specialist: Tom McDonough Production and Composition: Lynn Lustberg, MPS Limited
Photo Researcher: Jeremy Glover, Bill Smith Group
Copy Editor: Martha Williams
Illustrator: Scientific Illustrators, MPS Limited
Text Designer: Lisa Henry
Cover Designer: Larry Didona
Cover Image: Clockwise, from top: Hero Images /Corbis, Ian Lishman/Juice Images/Corbis, ColorBlind Images/Blend Images/Corbis, Ocean/Corbis, oriontrail, Sharle Kennedy/LWA /Corbis, Monkey Business Images, iStockphoto
© 2015, 2011, 2007 Cengage Learning
WCN: 02-200-203
ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted, stored, or used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping, Web distribution, information networks, or information storage and retrieval systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at Cengage Learning Customer \& Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit all requests online at www.cengage.com/permissions

Further permissions questions can be e-mailed to permissionrequest@cengage.com

Library of Congress Control Number: 2013932885
ISBN-13: 978-1-285-19919-1
ISBN-10: 1-285-19919-7

Cengage Learning

200 First Stamford Place, 4th Floor Stamford, CT 06902
USA

Cengage Learning is a leading provider of customized learning solutions with office locations around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at www.cengage.com/global.

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

To learn more about Cengage Learning Solutions, visit www.cengage.com. Purchase any of our products at your local college store or at our preferred online store www.cengagebrain.com.

CONTENTS

List of Applications ix
Preface xiii
CHAPTER 1
Basic Concepts 1
UNIT 1A
REVIEW OF OPERATIONS WITH WHOLE NUMBERS 2
1.1 Review of Basic Operations 2
1.2 Order of Operations 11
1.3 Area and Volume 14
1.4 Formulas 19
1.5 Prime Factorization 22
UNIT 1A: Review 26
UNIT 1B
REVIEW OF OPERATIONS WITH FRACTIONS 26
1.6 Introduction to Fractions 26
1.7 Addition and Subtraction of Fractions 31
1.8 Multiplication and Division of Fractions 43
1.9 The U.S. System of Weights and Measures 51 54
UNIT 1B: Review
UNIT 1B: Review
UNIT 1C
REVIEW OF OPERATIONS WITH DECIMAL FRACTIONS AND PERCENT 55
1.10 Addition and Subtraction of Decimal Fractions 55
1.11 Rounding Numbers 64
1.12 Multiplication and Division of Decimal Fractions 67
1.13 Percent 74
1.14 Rate, Base, and Part 79
1.15 Powers and Roots 87
1.16 Applications Involving Percent: Business and Personal Finance 90
UNIT 1C: Review 96
Chapter 1: Group Activities 97
Chapter 1: Summary 97
Chapter 1: Review 100
Chapter 1: Test 102
CHAPTER 2 Signed Numbers and Powers of 10 105
2.1 Addition of Signed Numbers 106
2.2 Subtraction of Signed Numbers 110
2.3 Multiplication and Division of Signed Numbers 112
2.4 Signed Fractions 115
2.5 Powers of 10 119
2.6 Scientific Notation 123
2.7 Engineering Notation 128
Chapter 2: Group Activities 131
Chapter 2: Summary 131
Chapter 2: Review 132
Chapter 2: Test 133
Chapters 1-2: Cumulative Review 134
CHAPTER 3 The Metric System 135
3.1 Introduction to the Metric System 136
3.2 Length 139
3.3 Mass and Weight 142
3.4 Volume and Area 144
3.5 Time, Current, and Other Units 147
3.6 Temperature 150
3.7 Metric and U.S. Conversion 152
Chapter 3: Group Activities 156
Chapter 3: Summary 157
Chapter 3: Review 157
Chapter 3: Test 158
CHAPTER 4 Measurement 159
4.1 Approximate Numbers and Accuracy 160
4.2 Precision and Greatest Possible Error 163
4.3 The Vernier Caliper 167
4.4 The Micrometer Caliper 174
4.5 Addition and Subtraction of Measurements 182
4.6 Multiplication and Division of Measurements 186
4.7 Relative Error and Percent of Error 189
4.8 Color Code of Electrical Resistors 193
4.9 Reading Scales 197
Chapter 4: Group Activities 205
Chapter 4: Summary 206
Chapter 4: Review 207
Chapter 4: Test 208
Chapters 1-4: Cumulative Review 209
CHAPTER 5 Polynomials: An Introduction to Algebra 211
5.1 Fundamental Operations 212
5.2 Simplifying Algebraic Expressions 214
5.3 Addition and Subtraction of Polynomials 218
5.4 Multiplication of Monomials 221
5.5 Multiplication of Polynomials 224
5.6 Division by a Monomial 226
5.7 Division by a Polynomial 228
Chapter 5: Group Activities 230
Chapter 5: Summary 230
Chapter 5: Review 232
Chapter 5: Test 232
CHAPTER 6 Equations and Formulas 233
6.1 Equations 234
6.2 Equations with Variables in Both Members 238
6.3 Equations with Parentheses 240
6.4 Equations with Fractions 243
6.5 Translating Words into Algebraic Symbols 247
6.6 Applications Involving Equations 248
6.7 Formulas 253
6.8 Substituting Data into Formulas 256
6.9 Reciprocal Formulas Using a Calculator 259
Chapter 6: Group Activities 262
Chapter 6: Summary 262
Chapter 6: Review 263
Chapter 6: Test 264
Chapters 1-6: Cumulative Review 264
CHAPTER 7 Ratio and Proportion 267
7.1 Ratio 268
7.2 Proportion 272
7.3 Direct Variation 279
7.4 Inverse Variation 285
Chapter 7: Group Activities 289
Chapter 7: Summary 289
Chapter 7: Review 289
Chapter 7: Test 290
CHAPTER 8 Graphing Linear Equations 291
8.1 Linear Equations with Two Variables 292
8.2 Graphing Linear Equations 297
8.3 The Slope of a Line 304
8.4 The Equation of a Line 310
Chapter 8: Group Activities 315
Chapter 8: Summary 315
Chapter 8: Review 317
Chapter 8: Test 318
Chapters 1-8: Cumulative Review 318
CHAPTER 9 Systems of Linear Equations 321
9.1 Solving Pairs of Linear Equations by Graphing 322
9.2 Solving Pairs of Linear Equations by Addition 328
9.3 Solving Pairs of Linear Equations by Substitution 333
9.4 Applications Involving Pairs of Linear Equations 334
Chapter 9: Group Activities 340
Chapter 9: Summary 340
Chapter 9: Review 341
Chapter 9: Test 342
CHAPTER 10 Factoring Algebraic Expressions 343
10.1 Finding Monomial Factors 344
10.2 Finding the Product of Two Binomials Mentally 345
10.3 Finding Binomial Factors 348
10.4 Special Products 350
10.5 Finding Factors of Special Products 352
10.6 Factoring General Trinomials 354
Chapter 10: Group Activities 357
Chapter 10: Summary 357
Chapter 10: Review 358
Chapter 10: Test 358
Chapters 1-10: Cumulative Review 358
CHAPTER 11 Quadratic Equations 361
11.1 Solving Quadratic Equations by Factoring 362
11.2 The Quadratic Formula 365
11.3 Applications Involving Quadratic Equations 367
11.4 Graphs of Quadratic Equations 371
11.5 Imaginary Numbers 375
Chapter 11: Group Activities 379
Chapter 11: Summary 379
Chapter 11: Review 380
Chapter 11: Test 380
CHAPTER 12 Geometry 381
12.1 Angles and Polygons 382
12.2 Quadrilaterals 389
12.3 Triangles 393
12.4 Similar Polygons 402
12.5 Circles 406
12.6 Radian Measure 414
12.7 Prisms 419
12.8 Cylinders 424
12.9 Pyramids and Cones 430
12.10 Spheres 437
Chapter 12: Group Activities 439
Chapter 12: Summary 440
Chapter 12: Review 443
Chapter 12: Test 445
Chapters 1-12: Cumulative Review 446
CHAPTER 13 Right Triangle Trigonometry 449
13.1 Trigonometric Ratios 450
13.2 Using Trigonometric Ratios to Find Angles 454
13.3 Using Trigonometric Ratios to Find Sides 457
13.4 Solving Right Triangles 458
13.5 Applications Involving Trigonometric Ratios 460
Chapter 13: Group Activities 468
Chapter 13: Summary 468
Chapter 13: Review 469
Chapter 13: Test 470
chapter 14 Trigonometry with Any Angle 473
14.1 Sine and Cosine Graphs 474
14.2 Period and Phase Shift 480
14.3 Solving Oblique Triangles: Law of Sines 484
14.4 Law of Sines: The Ambiguous Case 487
14.5 Solving Oblique Triangles: Law of Cosines 493
Chapter 14: Group Activities 498
Chapter 14: Summary 499
Chapter 14: Review 500
Chapter 14: Test 500
Chapters 1-14: Cumulative Review 501
CHAPTER 15 Basic Statistics 503
15.1 Bar Graphs 504
15.2 Circle Graphs 507
15.3 Line Graphs 510
15.4 Other Graphs 513
15.5 Mean Measurement 514
15.6 Other Average Measurements and Percentiles 516
15.7 Range and Standard Deviation 519
15.8 Grouped Data 521
15.9 Standard Deviation for Grouped Data 528
15.10 Statistical Process Control 530
15.11 Other Graphs for Statistical Data 534
15.12 Normal Distribution 537
15.13 Probability 540
15.14 Independent Events 542
Chapter 15: Group Activities 543
Chapter 15: Summary 544
Chapter 15: Review 545
Chapter 15: Test 546
CHAPTER 16 Binary and Hexadecimal Numbers 549
16.1 Introduction to Binary Numbers 550
16.2 Addition of Binary Numbers 552
16.3 Subtraction of Binary Numbers 553
16.4 Multiplication of Binary Numbers 554
16.5 Conversion from Decimal to Binary System 555
16.6 Conversion from Binary to Decimal System 557
16.7 Hexadecimal System 558
16.8 Addition and Subtraction of Hexadecimal Numbers 560
16.9 Binary to Hexadecimal Conversion 563
16.10 Hexadecimal Code for Colors 564
Chapter 16: Group Activities 565
Chapter 16: Summary 566
Chapter 16: Review 567
Chapter 16: Test 567
Chapters 1-16: Cumulative Review 568
APPENDICES APPENDIX A:Tables 569
Table 1: Formulas from Geometry 569
Table 2: Electrical Symbols 571
APPENDIX B: Exponential Equations 573
APPENDIX C: Simple Inequalities 579
APPENDIX D: Answers to Odd-Numbered Exercises and All Chapter Review and Cumulative Review Exercises 585
INDEX 613

LIST OF APPLICATIONS

[7

Auto/Diesel Service
Alternator-to-engine ratio, 270
Amount of fuel required, 277
Area of windshield, 188
Capacity of fuel tank, 278
Converting gallons to quarts and pints, 54
Cooling system leak, 185
Copper tubing length, 42
Cost of Batteries, 252
Cost per tire, 9, 72
Difference in tire tread, 62
Displacement of piston, 9
Distance from driver's side front tire to passenger's side rear tire after accident, 496
Distance from front tip of seat cushion to tip of head rest, 496
Distance traveled on a tank of gas, 9
Each piston displacement in cubic inches, 73
Each piston displacement in litres, 73
Finding piston movement distances, 466
Flywheel - drive gear ratio, 270
Horsepower developed by 1.6 L engine, 277

Horsepower of engine, 188
Increase in air pressure in tire at end of trip, 278
Kilometre per litre, 9
Labor cost per hour, 9
Length of crank shaft, 72
Length of cylinder, 22

Length of heater hose, 49
Length of socket, 63
Length of time engine runs at two different speeds, 338
Length of tool, 42
Mileage of vehicle, 188
Miles per gallon, 9, 72
Mixing parts cleaning
solution, 338
Mixing two types of gasoline, 252, 338
Oil flow rate, 270
Oil used, 40
Overtime hours, 72
Piston displacement, 22
Piston ring wear, 63
Ratio of secondary voltage
to primary voltage equals ratio of secondary turns to primary turns, 277
Service time on auto, 40, 49
Strengthening antifreeze
mixture in radiator, 252
Strokes to pump fuel, 277
Time to change tires, 49
Total miles on trip, 186
Total piston displacement
in cubic inches, 73
Total piston displacement in litres, 73
Valve stem length, 63
Volume of oil pan, 18
Volume of trunk in auto, 188

Industrial/

Construction Trades

Amount of sand to make
concrete, 277
Angles in a roof, 496

Blocks needed for wall, 11
Board ft of lumber, 48
Bookshelves construction, 251
Capacity of two trucks, 338
Concrete floor, 18
Contractor testing tanks, 338
Conveyer length needed, 463
Cost of copper tubing, 271
Cost of home in price per
square foot, 271
Current needs for compressor and air conditioner, 338
Cutting Cable, 72
Cutting pipe, 9
Cutting squares of corners on a piece of material to form a rectangular container, 370
Difference between plate thickness, 42
Difference of diameters of ends, 63
Dimensions of yard, 251
Distance between centers, 48
Distance between floor joists, 42
Distance between rivets, 48
Distance between two adjacent drilled holes, 466
Distance of house from sides of lot, 42
Drilling holes in metal plate, 463
Excavation of basement, 72
Find check dimension in a dove tail, 466

Find dimensions with vents, 49
Find size of square sheet of aluminum, 370
Find lengths in framing, 496
Floor space footage, 72
Gallons of paint needed, 18
Gauge for check of diameter of crankshaft journal, 463
Height of building, 467
Height of TV relay tower, 463
Increase in floor space, 85
Increase length and width of lot by same amount to increase area by 4000 m, 370
Inside diameter of pipe, 48
Insurance for replacement cost, 18
Invoice from lumberyard, 85
Length and width of a piece of sheet metal, 370
Length of cut boards, 251
Length of guy wire for smokestack, 463
Length of pieces of beam, 251
Length of rafter, 496
Length of roofline in a building, 466
Length of steel pipes, 48
Litres of liquid in a right circular tank, 463
Material for concrete, 338
Mixing chemicals, 54
Mixing concrete, 251
Number of boards purchased, 251

Number of bricks for a 25 foot wall, 277
Number of ceiling tiles needed, 17
Number of days to complete job, 73
Number of each type of tiles, 338
Number of studs needed, 9
Percent of volume of dry mix of cement, sand and gravel, 278
Pieces of drywall needed, 18
Pitch of roof to rise given the run, 277
Plumbing supply invoice, 85
Ratio of concrete to cement, 271
Ratio of wall to window area, 271
Reducing diameter of shaft, 42
Remaining thickness of plate after lathe pass, 42
Roadbed inclination, 463
Space between walls and windows, 10
Tap drill size, 42
Thickness of pipe wall, 63
Thickness of sheets of metal, 185
Thickness of six pieces of metal, 188
Tiles needed for wall, 17
Time of work for two brick layers, 338
Total boards in order, 9
Total thickness of sheets of metal, 185
Types of light
fixtures, 251
Volume of cement pad, 49
Weight of iron rods, 53
Width of river, 463

(\$)

Agriculture and
Horticulture
Applying pesticides, 83
Area of lawn, 22
Butterfat mixture, 338
Chemical for 220 acre field, 277
Concrete feed lot, 49
Corn and soybean sales, 338
Cost per pound of weight gain, 83

Difference of yield, 188
Fertilizer cost, 63
Fertilizer needed for lawn, 277
Gallons of herbicide, 83
Grass seed mix, 338
Herbicide ratio per acre, 271
Insecticide amount, 83
Mixing two types of milk, 252
Mixture for feed, 338
Mulch for flowerbed, 19
Percent of antifreeze in radiator, 278
Percent of fat in beef and number of pounds in a carcass, 278
Percent of live hog that is carcass, 278
Pesticide in spray tank, 277
Pesticide mix, 338
Placing plant container, 19
Pounds of N, P, K removed per acre used, 277
Rate of gallon per acre, 271
Sand \& topsoil mixture, 271
Volume of cylinder, 188
Wagon ratio of pounds per bushel, 270
Weight of feed mixture, 54
Width of area of border around rectangular garden, 571
Yellow pepper \& red pepper planted, 271
Yield of apple per tree and income from sale of apples, 277
Yield of field, 271, 277

國

Electronics
Batteries hooked up in a series, 338
Cable for wiring, 49
Conduit length and angle, 463
Current in branches in parallel circuit, 338
Current in circuit, 73
Current needed, 49
Current through one of branches of parallel circuit, 185
Electrolyte solution, 338
Find t (time) for different values of current, 370

Find t (time) for different values of V (voltage), 370
Frequency of radar waves, 48
Heating element current, 73
In ac circuit, a right triangle shows relationship of impedance, resistance, phase angle, and reactance, 465
Inductive resistance in circuit, 73
Length of copper resistance, 277
Length of wire needed, 49, 339
Load of circuit, 49
Ohm's Law, 10
Outlet spacing, 49
Power in circuit, 73
Power used, 49
Ratio of secondary turns to primary turns in a transformer, 277
Ratio voltage drop across a resistor, 270
Resistance in flashlight bulb, 73
Resistance in lamp, 73
Size of two resisters, 339
Total current in parallel circuit, 41, 62
Total resistance in series circuit, 62
Transformer coil ratio, 270
Transformer voltage, 270
Two types of capacitors, 338
Type branches in parallel circuit, 338
Using right triangle to find voltage across coil, 465
Voltage drop in resister, 270, 277
Voltage of iron, 49
Voltage of source, 62
Wavelength of radio waves, 48

Manufacturing
Amps used, 73
Diameter of largest part, 43
Diameter of pulleys, 339
Distance of holes from end, 62

Find centers of equally spaced bolt holes in a piece of metal, 465
Find missing dimension, 63
Hexagon length of side, 62
Length after cuts, 48
Length of drying booth, 278
Length of guy wire to attach antenna, 498
Length of rod after cutting, 72
Length of rod, 42
Length of shaft, 42, 43, 62, 102
Linear feet of pipe in inventory, 9
Number of cuts needed to turn down a stock, 72
Number of defective tires, 83
Number of metal sheets in pile, 72
Oil needed, 11
Pins after cuts, 48
Pitch of screw, 72
Sheet metal pile height, 72
Space between end of plywood and stripes, 11
Time for lathe to turn, 48
Weight of metal sheet, 73

CAD/Drafting

Amount of "peanuts" used, 19
Angles for rafter to be laid, 464
Capacity of tank, 54
Channel dimensions, 50
Construction of shipping box, 19
Converting feet to yards, 54
Designing a mating part, 467
Difference in output of drawings, 10
Dimension for length of drawing, 186
Dimensions of plot, 339
Dimensions of walkway, 339
Distance across corner of hex bolt, 467
Distance between points, 41
Height needed for riser, 72
Increase in door area, 370
Internal diameter of tube, 62
Length of pipe welds, 49

Length of shaft, 42
Locating a benchmark, 467
Location of two ports
for connection to two
threaded posts, 467
Number of stores, 19
Original dimensions of room, 339
Original dimensions of building, 339
Overall dimensions of a barn model, 278

ए

HVAC
Airflow in cubic feet per second, 53
Converting lb to oz, 53
Cooling requirement, 40
Cost of duct per inch, 72
Cost of ductwork replacement, 9
Cost of metal duct, 277
Dimensions of building, 339
Duct excess, 40
Duct length, 48, 464
Finding angles for placing air handlers, 496
Flow of two air ducts, 339
Furnace space, 188
Gas used over 4 month period, 186
Length of ducts in kite shaped room, 496
Pieces of duct, 48
Ratio of the BTU of two air conditioners, 271
Sections of duct for furnace, 188
Supply airflow of unit, 186
Total cost of duct, 62
Ventilation requirement CFM, 188
Volume of circulated air, 18
Volume of duct, 18
Volume of furnace filter, 18

Welding

Area of piece of sheet metal, 54
Argon gas used, 9
Cost of welding rods, 277
Cutting pieces of pipe, 48
Difference in diameter of welding rods, 40

Dimensions of sheet metal to patch of hole in large metal tank, 370
Earnings of experience welder and beginner welder, 339
Hours of work for each welder, 338
I-beam divided into equal parts, 72
Length of support for a conveyor belt, 463
Length of welded piece, 40, 496
Length of welded pipe, 9, 40, 62
Measure of angles in a triangular metal sheet, 496
Number of high quality welds, 84
Percent of welds completed, 84
Ratio of 4 ft steel angle to 2 ft angle weld, 271
Ratio of welding rods, 271
Rods used in welds, 188
Size of piece left after cut, 62
Steel angle divided into equal parts, 72
Steel angle welds, 185
Total length of steel angle weld, 54
Total length of weld, 48
Volume of storage bin, 188
Volume of welded container, 18
Weight of scrap metal, 185

\square

Allied Health
Alcohol percentage, 49
Amount of medicine in one dose, 73
Amount of orange juice, 10
Diluting alcohol for a solution, 278
Find number of grams of pure ingredient to prepare a solution, 278
Fluid Input \& Output, 9
Medicine dosage, 10, 49, 73, 74
mL needed to give a desired dose, 277, 278
Number of doses of medicine doses from bottle, 49

Number of drops to set up IV, 271
Number of milligrams of medicine, 73
Number of teaspoons of medicine over two days, 49
Number of vials of two medications used, 339
Preparing a 20\% saline solution, 338
Rate of intravenous solution, 271, 339
Ratio of dextrose, 271
Saline solution mixture, 339
Total ounces of medication for day, 49
Weight loss of a newborn, 49
Weight of baby, 49

4

Culinary Arts
Amount of each ingredient to make 18 servings of cheese soufflé, 279
Amount of each ingredient to serve 12 lb of beef tenderloin, 279
Amount of each ingredient to serve 25 people la crème au chocolat, 279
Cooking oil available, 50
Cups of each ingredient to make 35 servings, 279
Diluting chicken soup, 257
Dividing tips at end of day, 11
Find edible portion of watermelon, 50
How many steaks can be cut from a loin, 50
Individual items in delivery to kitchen, 11
Ingredients to serve 10 people, 279
Kitchen ratio for popover butter, 279
Kitchen ratio for sherry vinegar marinade, 279
Least number of servers needed, 11
Maximum seating, 11
Mixing different types of ground beef, 339
Number of bone-in prime rib cuts from same number of beef loins, 278

Number of pie crusts from pie dough, 50
Number of servings from container, 54
Pork: beef ratio for ground beef, 278
Potatoes in kitchen when new order needed, 43
Quarts of fruit juice, 54
Remaining flour, 43
Remaining French fries, 43
Remaining lettuce, 43
Remaining pie, 43
Scoops of sugar needed, 50
Seating of guests at tables, 339
Selling cups and bowls of chili, 339
Short loin available for soup, 50
Table top requirements, 257
Total amount of cooking oil, 64
Total end cut servings possible, 11
Total gallons in soup recipe, 54
Total number of ounces in drink of the day, 64
Total of butter used, 43
tsp needed for recipe, 54
Volume of punch from recipe, 64
Weight in pounds for ingredients of completed recipe, 64

区

Aviation
Altitude of plane, 17, 53
Area formed by flight, 188
Area of runway, 17
Certificate flight time, 9
Cost of gallon of fuel, 72
Dimensions of wing of a small Cessna, 370
Draining fuel out of tank, 185
Flight distance, 9
Flight mileage, 62
Flying time, 62
Fuel used, 40, 188, 277
Ground length of flight, 464
Hours each of two planes
flown for a month, 339
Hours of flying lessons, 188
Length of taxiway, 496

Nautical miles flown, 73
Operational zone, 9
Plane speed, 48
Ratio of flight time for single engine rating to commercial rating, 271
Runway length, 54
Search time, 48
Speed of plane 72
Straight-line distance back to base, 496
Weight of baggage in compartments, 185

*

Natural Resources

Allowance for kerf, 50
Amount of N-P-K applied, 278
Amount of water to get an actual one inch of water over one acre, 278
Capacity of silo, 83
CO_{2} level in atmosphere in 2010, 188
Collecting sea salt, 252
Converting area of lawn to acres, 54
Cords of fire wood burned, 43
Crossing plants, 50
Cruising timber, 11
Cubic miles of water in Cayuga Lake, 188
Deer and elk population control, 252
Density of deer, 85

Difference in height of two waterfalls, 339
Distance for hiker, 43
Distance of kite from a person, 498
Fertilizer cost, 63
Foods scrap compost, 188
Homeowner lawn, 43
Increase in population, 63
Length of cutboards, 339
Mixing two types of grain, 339
Municipal solid waste (MSW) decrease, 85
Petroleum reserves, 63
Population of deer, 85
Product weight on carton, 40
Salt contained in sea water, 278
Seating guests, 11
Settling tank at wastewater plant, 19
Survival rate of flock of ducks (sord), 85
Tilapia feed, 11
Tons of waste water, 83
Tree harvested for firewood, 50
Truckloads of fish, 54
Turns to retrieve line of fishing reel, 278
Use of a Biltmore stick in measuring height of tree, 54
Volume of cord of wood, 19
Volume of rick of firewood, 83
water in shopping center paved lot, 188
Weight of firewood, 85
Weight of fish, 186
Weight of trash for week, 186
Width of jaw opening of snake, 498

圆

Business \& Personal

 FinanceAmount borrowed from bank, 251
Amount invested to earn interest, 251
Amount needed to generate a 5% return, 252
Annual rate of interest for value of discount, 96
Cost using two types of ground beef, 252
Decision on how to finance auto, 95
Decrease in salary, 84
Decrease in value of house, 84
Distributing money, 251
Effective rate of interest for value of discount, 96
Effective rate of interest on early payment, 96
Effective rate of interest on purchase, 96
Effective rate of return on cash discount, 96
Effective rate of return, 96
Family loan, 95

Hours worked for each girl, 251
House payment on home loan, 95
Interest on savings account, 95
Investing money, 95
Investment in two types of bonds, 339
Investment necessary to cover CC dues, 252
Money owed on loan compounded annually, 95
Money owed on loan compounded daily, 95
Money owed on loan compounded monthly, 95
Money owed, 95
Payment on a new truck, 95
Percent of reduction, 278
Percent of the increase in pay, 278
Price of purchased goods, 83
Purchasing auto, 96
Rate of interest on loan, 83
Salary increase, 83
Sale of two carpets, 339
Sale price of discounted items, 84
Savings amount after 5 years, 95
Savings amount after 8 years, 95
Type of apartment rented, 339
Types of snorkel sold, 339

PREFACE

Elementary Technical Mathematics, Eleventh Edition, is intended for technical, trade, allied health, or Tech Prep programs. This book was written for students who plan to learn a technical skill, but who have minimal background in mathematics or need considerable review. To become proficient in most technical programs, students must learn basic mathematical skills. To that end, Chapters 1 through 4 cover basic arithmetic operations, fractions, decimals, percent, the metric system, and numbers as measurements. Chapters 5 through 11 present essential algebra needed in technical and trade programs. The essentials of geometry-relationships and formulas for the most common two- and three-dimensional figures-are given in detail in Chapter 12. Chapters 13 and 14 present a short but intensive study of trigonometry that includes right-triangle trigonometry as well as oblique triangles and graphing. The concepts of statistics that are most important to technical fields are discussed in Chapter 15. An introduction to binary and hexadecimal numbers is found in Chapter 16 for those who requested this material.

We have written this text to match the reading level of most technical students. Visual images engage these readers and stimulate the problem-solving process. We emphasize that these skills are essential for success in technical courses.

The following important text features have been retained from previous editions:

- We use a large number of applications from a wide variety of technical areas, including auto/diesel service, industrial and construction trades, electronics, agriculture and horticulture, allied health, CAD/drafting, HVAC, manufacturing, welding, aviation, natural resources, culinary arts, and business and personal finance.
- Chapter 1 reviews basic concepts in such a way that individuals, groups of students, or the entire class can easily study only those sections they need to review.
- A comprehensive introduction to basic algebra is presented for those students who need it as a prerequisite to more advanced algebra courses. However, the book has been written to allow the omission of selected sections or chapters without loss of continuity, to meet the needs of specific students.
- More than 6,490 exercises assist student learning of skills and concepts.
- More than 750 detailed, well-illustrated examples, many with step-by-step comments, support student understanding of skills and concepts.
- A chapter summary with a glossary of basic terms, a chapter review, and a chapter test appear at the end of each chapter as aids for students in preparing for quizzes and exams. Each chapter test is designed to be completed by an average student in no more than approximately 50 minutes.

CHAPTER 3 Review

Give the metric prefix for each value:

1. 0.001
2. 1000
Give the SI abbreviation for each prefix:
3. mega
4. micro

Write the SI abbreviation for each quantity:
5. 42 millilitres
6. 8.3 nanoseconds

Write the SI unit for each abbreviation:
7. 18 km
8. 350 mA
9. $50 \mu \mathrm{~s}$

Which is larger?
11. 1 kW or 1 MW
10. 1 L or 1 mL
13. $1 \mathrm{~m}^{3}$ or 1 L

Fill in each blank:
14. $650 \mathrm{~m}=$ \qquad km
15. $750 \mathrm{~mL}=$ \qquad L
16. $6.1 \mathrm{~kg}=$ \qquad g
17. $4.2 \mathrm{~A}=$ \qquad $\mu \mathrm{A}$
18. $18 \mathrm{MW}=$ \qquad mm^{2}
20. $250 \mathrm{~cm}^{2}=$ \qquad
21. $25,000 \mathrm{~m}^{2}=$ \qquad _ ha
22. $0.6 \mathrm{~m}^{3}=$ \qquad cm^{3} 23. $250 \mathrm{~cm}^{3}=$ \qquad
24. $72^{\circ} \mathrm{F}=$ \qquad ${ }^{\circ} \mathrm{C}$ 25. $-25^{\circ} \mathrm{C}=$ \qquad ${ }^{\circ} \mathrm{F}$
26. Water freezes at \qquad ${ }^{\circ} \mathrm{C}$.
27. Water boils at \qquad ${ }^{\circ} \mathrm{C}$.
28. $180 \mathrm{lb}=\ldots \mathrm{kg} \quad$ 29. $126 \mathrm{ft}=$ \qquad _m
30. $360 \mathrm{~cm}=$ \qquad in.
31. $275 \mathrm{in}^{2}=$ cm^{2}
32. $18 \mathrm{yd}^{2}=$ \qquad ft^{2}
33. $5 \mathrm{~m}^{3}=$ \qquad ft^{3}
34. 15.0 acres $=$ \qquad ha

CHAPTER 3 Test

1. Give the metric prefix for 1000 .
2. Give the metric prefix for 0.01 .
3. Which is larger, 200 mg or 1 g ?
4. Write the SI unit for the abbreviation $240 \mu \mathrm{~L}$.
5. Write the abbreviation for 30 hectograms.
6. Which is longer, 1 km or 25 cm ?

Fill in each blank:
7. $4.25 \mathrm{~km}=$ \qquad m
8. $7.28 \mathrm{~mm}=$ \qquad $\mu \mathrm{m}$
9. $72 \mathrm{~m}=$ \qquad mm
10. $256 \mathrm{hm}=$ \qquad cm
11. $12 \mathrm{dg}=$ \qquad mg 12. $16.2 \mathrm{~g}=$ \qquad mg
13. 7.236 metric tons $=$ \qquad _ kg
14. $310 \mathrm{~g}=$ \qquad cg _ L 15. $72 \mathrm{hg}=$ \qquad
16. $1.52 \mathrm{dL}=$ \qquad L 17. $175 \mathrm{~L}=$ \qquad mg
m^{3}
21. What is the basic SI unit of time?
22. Write the abbreviation for 25 kilowatts.

Fill in each blank:
23. $280 \mathrm{~W}=$ \qquad kW
24. $13.9 \mathrm{~mA}=$ \qquad A
25. $720 \mathrm{ps}=$ \qquad ns
26. What is the basic SI unit for temperature?
27. What is the freezing temperature of water on the Celsius scale?
Fill in each blank, rounding each result to three significant digits when necessary:
28. $25^{\circ} \mathrm{C}=$ \qquad ${ }^{\circ} \mathrm{F}$
29. $28^{\circ} \mathrm{F}=$ \qquad ${ }^{\circ} \mathrm{C}$
30. $98.6^{\circ} \mathrm{F}=$ \qquad in.
33. $1.8 \mathrm{ft}^{3}=$ \qquad $-\mathrm{mi}$
32. $200 \mathrm{~cm}=$ \qquad 33. $1.8 \mathrm{ft}^{3}=$ i^{3}

- The text design and second color help to make the text more easily understood, highlight important concepts, and enhance the art presentation.
- A reference of useful, frequently referenced information-such as metric system prefixes, U.S. weights and measures, metric and U.S. conversion, and formulas from geometry-is printed on the inside covers.
- The use of a scientific calculator has been integrated in an easy-to-use format with calculator flowcharts and displays throughout the text to reflect its nearly universal use in technical classes and on the job. The instructor should inform the students when not to use a calculator.

Using a Calculator to Multiply and Divide Fractions

Example 16
Multiply: $2 \frac{5}{6} \times 4 \frac{1}{2}$.

$123 / 4$
Thus, $2 \frac{5}{6} \times 4 \frac{1}{2}=12 \frac{3}{4}$.
Example 17
Divide: $5 \frac{5}{7} \div 8 \frac{1}{3}$.
$5 A \% 5 A \% 7 \div 8 A \% 1 A \% 3=$
24/35
Thus, $5 \frac{5}{7} \div 8 \frac{1}{3}=\frac{24}{35}$.

- Cumulative reviews are provided at the end of every even-numbered chapter to help students review for comprehensive exams.

Cumulative Review CHAPTERS 1-6

1. Find the prime factorization of 696 .
2. Change 0.081 to a percent.
3. Write 3.015×10^{-4} in decimal form.
4. Write 28,500 in scientific notation.
5. $5 \mathrm{ha}=\ldots \mathrm{m}^{2}$
6. $101^{\circ} \mathrm{F}=$ \qquad ${ }^{\circ} \mathrm{C}$
7. $6250 \mathrm{in}^{2}=$ \qquad ft^{2}
8. Give the number of significant digits (accuracy) of each measurement:
a. 110 cm
b. 6000 mi
c. 24.005 s
9. Read the measurement shown on the vernier caliper in Illustration $1 \mathbf{a}$. in metric units and \mathbf{b}. in U.S. units.

ILLUSTRATION 1
11. Use the rules for addition of measurements to find the sum of $25,000 \mathrm{~W} ; 17,900 \mathrm{~W} ; 13,962 \mathrm{~W} ; 8752 \mathrm{~W}$; and $428,000 \mathrm{~W}$.

Simplify:
12. $(2 x-5 y)+(3 y-4 x)-2(3 x-5 y)$
13. $\left(4 y^{3}+3 y-5\right)-\left(2 y^{3}-4 y^{2}-2 y+6\right)$
14. $\left(3 y^{3}\right)^{3}$
15. $-2 x\left(x^{2}-3 x+4\right)$
16. $\left(6 y^{3}-5 y^{2}-y+2\right)(2 y-1)$
17. $(4 x-3 y)(5 x+2 y)$
18. $\frac{215 x^{2} y^{3}}{45 x^{3} y^{5}}$
19. $\left(16 x^{2} y^{3}\right)\left(-5 x^{4} y^{5}\right)$
20. $\frac{x^{3}+2 x^{2}-11 x-20}{x+5}$
21. $3 x^{2}-4 x y+5 y^{2}-\left(-3 x^{2}\right)+(-7 x y)+10 y^{2}$

Solve:
22. $4 x-2=12$
23. $\frac{x}{4}-5=9$
24. $4 x-3=7 x+15$
25. $\frac{5 x}{8}=\frac{3}{2}$

- Studies show that current students will experience several career changes during their working lives. The chapter-opening pages illustrate various career paths for students to consider as their careers, technology, and the workplace evolve. The basic information provided in the chapter openers about a technical career is explored in further detail on the Cengage book companion website at www.cengage.com/mathematics/ewen.

Mathematics at Work

Modern manufacturing companies require a wide variety of technology specialists for their operations. Manufacturing technology specialists set up, operate, and maintain industrial and manufacturing equipment as well as computer-numeric-controlled (CNC) and other automated equipment that make a large variety of products according to controlled specifications. Some focus on systematic equipment maintenance and repair. Others specialize in materials transportation and distribution; that is, they are responsible for moving and distributing the products to the sales locations and/or consumers after they are manufactured. Other key team members include designers, engineers, draftspersons, and quality control specialists. Training and education for these careers are available at many community colleges and trade schools. Some require a bachelor's degree. For more information, go to the website www.cengage.com/mathematics/ewen.

Manufacturing Technology Specialist Technician working with numerically controlled milling machine

- Special application exercises in the areas of auto/diesel service, industrial and construction trades, electronics, agriculture and horticulture, allied health, CAD/drafting, HVAC, manufacturing, welding, aviation, natural resources, culinary arts, and business and personal finance have been submitted by faculty in these technical areas and are marked with related icons.

Sample Ratio and Proportion Applications

49. χ A plane flies for 3 h and uses 25 gal of $100 L L$ aviation fuel. How much will be used if the plane flies for only 1.2 h ?
50. Metal duct that is 6 in . in diameter costs $\$ 7.50$ for 5 ft . If 16.5 ft are needed for an order, what is the cost?
51. Suppose 20 gal of water and 3 lb of pesticide are applied per acre. How much pesticide should you put in a 350-gal spray tank? Assume that the pesticide dissolves in the water and has no volume.
52. A farmer uses 150 lb of a chemical on a 40 -acre field. How many pounds will he need for a 220 -acre field? Assume the same rate of application.
53. Suppose a yield of 100 bu of corn per acre removes 90 lb of nitrogen, phosphorus, and potash (or potassium) (N, P, and K). How many pounds of N, P, and K would be removed by a yield of 120 bu per acre?
54. A farmer has a total yield of 42,000 bu of corn from a 350-acre farm. What total yield should he expect from a similar 560-acre farm?

Sample Applications of Systems of Linear Equations
14. In a parallel circuit, the total current is 1.25 A through the two branches. One branch has a resistance of 50Ω, and the other has a resistance of 200Ω. What current is flowing through each branch? Note: In a parallel circuit, the products of the current in amperes and the resistance in ohms are equal in all branches.
18. $\$ 7$ In testing a hybrid engine, various solutions of gasoline and methanol are being tried. How much of a 95\% gasoline solution and how much of an 80% gasoline solution would be needed to make 240 gal of a 90% gasoline solution?
22. A lawn seed mix containing 8% bluegrass is mixed with one that contains 15% bluegrass. How many pounds of each are needed to make 55 lb of a mixture that is 12% bluegrass?
25. A nurse gives 1000 mL of an intravenous (IV) solution over a period of 8 h . It is given first at a rate of $140 \mathrm{~mL} / \mathrm{h}$, then at a reduced rate of $100 \mathrm{~mL} / \mathrm{h}$. How long should it be given at each rate?
32. One concrete mix contains four times as much gravel as cement. The total volume is $15 \mathrm{yd}^{3}$. How much of each ingredient is used?
43. If the length of a building is $2 \frac{1}{2}$ times the width and each dimension is increased by 5 ft , then the perimeter is 230 ft . Find the dimensions of the original building.

- Group activity projects are included at the end of each chapter.

CHAPTER 3 Group Activities

1. Mathematics is used in a variety of places. One location where mathematics is used frequently is in the medical profession. In small groups, brainstorm about the places in a hospital where you think math is used. Think of the different departments and the different professions in the hospital such as radiology, general surgery, etc. After you have thought about this, divide and go to a hospital to check your theory of where and how math is used. Get permission from the proper authorities to ask the employees how they use math. One example is pediatricians who use math in prescribing medication to children. They must be careful to get the weight of a child and use this information to prescribe the proper dosage. The prescription notifies the pharmacist of the amount of medication to give the patient. Make a report on your findings of how math is used in the medical field and make special note of the conversions that doctors and nurses must use. Plan a similar activity for another workplace/profession.
2. Do the following:
a. Write how old you are to the day. Convert this to days. Convert this to hours and then to minutes
b. Write how tall you are. Convert this to feet, to yards, to inches, to metres, and to centimetres
c. Write how much you weigh. Convert this to kilograms and to grams.
Do a little research and see what gravity is on earth and how your weight is determined by gravity. Further research what gravity is on the moon and how your weight would differ on the moon compared to on earth. $(W=m g)$
3. Each student in a group brings a favorite recipe to class. First, each student converts all the standard measurements in his or her own recipe to metric. Then, each student converts all the standard measurements in another student's recipe to metric. Discuss any variations and how they might affect the outcome of the recipe. If there is sufficient interest, prepare the metric recipe and discuss differences in preparation and taste, if any.

- An instructor's edition that includes all the answers to exercises is available.

Significant changes in the eleventh edition include the following:

- new categories of culinary arts and business and personal finance
- new and revised applications with the help and expertise of professionals in the areas of agriculture with horticulture added, auto/diesel service, and allied health
- new Appendix C Simple Inequalities
- more than 150 additional new exercises.

Useful ancillaries available to qualified adopters of this text include the following:

- Instructor's Edition The Instructor's Edition features an appendix containing the answers to all problems in the book. (978-1-285-19921-4)
- Instructor Companion Website Everything you need for your course in one place! This collection of book-specific lecture and class tools is available online via www .cengage.com/login. Formerly delivered on PowerLecture Discs, access and download PowerPoint presentations, images, Solution Builder, and much more.
- Solution Builder Easily build solution sets for homework or exams using Solution Builder's online solutions manual. www.cengage.com/solutionbuilder
- Enhanced WebAssign Homework with LOE Access (Printed Access Card ISBN 9781285858029, Online Access Code ISBN: 9781285858036) Exclusively from Cengage Learning, Enhanced WebAssign combines the exceptional Mathematics content that you know and love with the immediate feedback, rich tutorial content, and interactive, fully customizable eBooks (You-Book), helping students to develop a deeper conceptual understanding of their subject matter. Online assignments canbe built by selecting from thousands of text-specific problems or can be supplemented with problems from any Cengage Learning textbook.

Student Resources:

- Student Solutions Manual

Author: James Lapp
(ISBN: 978-1-28519927-6)
The Student Solutions Manual provides worked-out solutions to all of the oddnumbered exercises in the text.

- Enhanced WebAssign Homework LOE Printed Access Card for One Term Math and Science
(Printed Access Card ISBN 9781285858029, Online Access Code ISBN: 9781285858036)
Enhanced WebAssign (assigned by the instructor) provides you with instant feedback on homework assignments. This online homework system is easy to use and includes helpful links to textbook sections, video examples, and problem-specific tutorials.

We are grateful for the courtesy of the L. S. Starrett Company in allowing us to use photographs of their instruments in Chapter 4. A special effort was made to review and update the applications with the expertise of professionals in the following technical areas: Agriculture with Horticulture applications reviewed and added by Nina H. Mitchell, Hopkinsville Community College; Auto/Diesel Service by William J. deKryger, Central Michigan University; and Allied Health by Catherine W. Johnson, Alamance Community College. Nelson Collins of Joliet Junior College supplied the new Culinary Arts applications. We greatly appreciate their special assistance.

The authors also thank the many faculty members who used earlier editions and who offered suggestions. In particular, we thank Dahwei Chang, Arizona Western College; Stasos Clark, Des Moines Area Community College; Nelson Collins, Joliet Junior College; Kayana Hoagland, South Puget Sound Community College; Linda Padilla, Joliet Junior College; and Susan Sharkey, Waukesha County Technical College.

Anyone wishing to correspond regarding suggestions or questions should write Dale Ewen through the publisher.

For all their help, we thank our Product Team Manager Richard Stratton, Media Developers Guanglei Zhang and Bryon Spencer, and Product Assistant Stephanie Kreuz. We are especially grateful to senior content project manager, Cheryll Linthicum and project manager, Lynn Lustberg of MPS Limited for their professional commitment to quality and for jointly addressing and solving the problems associated with migrating to a new software and to Scott Barnett for his outstanding work and attention to the details of accuracy checking and proofreading.

Dale Ewen
C. Robert Nelson

1

Basic Concepts

Mathematics at Work

Automotive service technicians inspect, maintain, and repair automobiles, light trucks, and vans. In the past, these workers were called mechanics. The increasing sophistication of automotive technology now requires workers to be able to use computerized shop equipment and work with electronic components in addition to the traditional hand tools. When a mechanical or electronic problem occurs, the technician uses a diagnostic approach to repair the problem based on information from the owner and the information obtained from the service equipment and computerized databases and service manuals.

The National Automotive Technicians Education Foundation (NATEF), an affiliate of the National Institute for Automotive Service Excellence (ASE), certifies automotive service technician, collision repair and refinish technician, engine specialist, and medium/heavy truck technician training programs offered by community colleges, postsecondary trade schools, technical institutes, and high schools. Although voluntary, NATEF certification signifies that the program meets uniform standards for instructional facilities, equipment, staff credentials, and curriculum. Various automobile manufacturers and their participating dealers also sponsor two-year associate degree programs at postsecondary schools across the United States. For more information, go to the website www.cengage.com /mathematics/ewen

Automotive Service Technician

Automotive service technician working on an automobile

OBJECTIVES

- Add, subtract, multiply, and divide whole numbers.

O Add, subtract, multiply, and divide whole numbers with a scientific calculator.

- Apply the rules for order of operations.
- Find the area and volume of geometric figures.
- Evaluate formulas.
- Find the prime factorization of whole numbers.

O Add, subtract, multiply, and divide fractions.
O Add, subtract, multiply, and divide fractions with a scientific calculator.
O Use conversion factors to change from one unit to another within the U.S. system of weights and measures.

O Add, subtract, multiply, and divide decimal fractions.
O Add, subtract, multiply, and divide decimal fractions with a scientific calculator.

- Round numbers to a particular place value.

O Apply the percent concept; change a percent to a decimal, a decimal to a percent, a fraction to a percent, and a percent to a fraction.

- Solve application problems involving the addition, subtraction, multiplication, and division of whole numbers, fractions, and decimal fractions and percents.
- Find powers and roots of numbers using a scientific calculator.
- Solve personal finance problems involving percent.

UNIT 1A Review of Operations with Whole Numbers

1.1 Review of Basic Operations

The positive integers are the numbers $1,2,3,4,5,6$, and so on. They can also be written as $+1,+2,+3$, and so on, but usually the positive $(+)$ sign is omitted. The whole numbers are the numbers $0,1,2,3,4,5,6$, and so on. That is, the whole numbers consist of the positive integers and zero.

The value of any digit in a number is determined by its place in the particular number. Each place represents a certain power of 10 . By powers of 10 , we mean the following:
$10^{0}=1$
$10^{1}=10$
$10^{2}=10 \times 10=100$ (the second power of 10)
$10^{3}=10 \times 10 \times 10=1000$ (the third power of 10)
$10^{4}=10 \times 10 \times 10 \times 10=10,000$ (the fourth power of 10) and so on.
NOTE: A small superscript number (such as the 2 in 10^{2}) is called an exponent.
The number 2354 means 2 thousands plus 3 hundreds plus 5 tens plus 4 ones.

In the number $236,895,174$, each digit has been multiplied by some power of 10 , as shown below.

	(ten millions)		(hundred thousands)		(thousands)		(tens)	
	10^{7}		10^{5}		10^{3}		10^{1}	
	\|		1		\|		\|	
2	3	6,	8	9	5,	1	7	4
\|		1		1		\|		
10^{8}		10^{6}		10^{4}		10^{2}		10^{0}
(hundred		(millions)		(ten		(hundreds)		(units)
millions)				ousan				

The "+" (plus) symbol is the sign for addition, as in the expression $5+7$. The result of adding the numbers (in this case, 12) is called the sum. Integers are added in columns with the digits representing like powers of 10 in the same vertical line. (Vertical means up and down.)

Example 1 Add: $238+15+9+3564$.
238
15
9
$\frac{3564}{3826}$

Subtraction is the inverse operation of addition. Therefore, subtraction can be thought of in terms of addition. The "-" (minus) sign is the symbol for subtraction. The quantity $5-3$ can be thought of as "what number added to 3 gives 5?" The result of subtraction is called the difference.

To check a subtraction, add the difference to the second number. If the sum is equal to the first number, the subtraction has been done correctly.

Example 2 Subtract: $2843-1928$.
 Subtract:
 Check:
 2843 first number
 $\underline{-1928}$ second number
 915
 1928
 $\begin{array}{r}+915 \\ \hline 2843\end{array}$
 2843 This sum equals the first number, so 915 is the correct difference.

Next, let's study some applications. To communicate about problems in electricity, technicians have developed a "language" of their own. It is a picture language that uses symbols and diagrams. The symbols used most often are listed in Table 2 of Appendix A. The circuit diagram is the most common and useful way to show a circuit. Note how each

figure 1.2

(a) Series circuit
component (part) of the picture (Figure 1.1a) is represented by its symbol in the circuit diagram (Figure 1.1b) in the same relative position.

figure 1.1
Components in a circuit

The light bulb may be represented as a resistance. Then the circuit diagram in Figure 1.1b would appear as in Figure 1.2, where

represents the resistor
represents the switch
represents the source. The short line represents the negative terminal of a battery, and the long line represents the positive terminal. The current flows from positive to negative.

NOTE: In this book we assume that the charge carriers are positive, and we draw our current arrows in the direction that a positive charge would follow. This is a common practice used by most technicians and engineers. However, you may find the negative-charge-currentflow convention is also used in many books. Regardless of the convention used, the formulas and results are the same.

There are two basic types of electrical circuits: series and parallel. An electrical circuit with only one path for the current, I, to flow is called a series circuit (Figure 1.3a). An electrical circuit with more than one path for the current to flow is called a parallel circuit (Figure 1.3b). A circuit breaker or fuse in a house is wired in series with its outlets. The outlets themselves are wired in parallel.

(b) Parallel circuits

figure 1.3

Two basic types of electrical circuits

Example 3 In a series circuit, the total resistance equals the sum of all the resistances in the circuit. Find the total resistance in the series circuit in Figure 1.4. Resistance is measured in ohms, Ω.

Example 4
Studs are upright wooden or metal pieces in the walls of a building, to which siding, insulation panels, drywall, or decorative paneling is attached. (A wall portion with seven studs is shown in Figure 1.5.) Studs are normally placed 16 in. on center and are placed double at all internal and external corners of a building. The number of studs needed in a wall can be estimated by finding the number of linear feet (ft) of the wall. How many studs are needed for the exterior walls of the building in Figure 1.6?

figure 1.5

figure 1.6

The outside perimeter of the building is the sum of the lengths of the sides of the building:

48 ft
15 ft
15 ft
9 ft
32 ft
8 ft
6 ft
6 ft
5 ft
10 ft
154 ft

Therefore, approximately 154 studs are needed in the outside wall.

Repeated addition of the same number can be shortened by multiplication. The " \times " (times) and the "." (raised dot) are used to indicate multiplication. When adding the lengths of five pipes, each 7 ft long, we have $7 \mathrm{ft}+7 \mathrm{ft}+7 \mathrm{ft}+7 \mathrm{ft}+7 \mathrm{ft}=35 \mathrm{ft}$ of pipe. In multiplication, this would be $5 \times 7 \mathrm{ft}=35 \mathrm{ft}$. The 5 and 7 are called factors. The result of multiplying numbers (in this case, 35) is called the product. Computing areas, volumes, forces, and distances requires skills in multiplication.

Example 5 Multiply: 358×18.

358
$\begin{array}{r}\times 18 \\ \hline 2864\end{array}$
$\frac{358}{6444}$
Division is the inverse operation of multiplication. The following symbols are used to show division: $15 \div 5,5 \sqrt{15}, 15 / 5$, and $\frac{15}{5}$. The quantity $15 \div 5$ can also be thought of as "what number times 5 gives 15 ?" The answer to this question is 3 , which is 15 divided by 5. The result of dividing numbers (in this case, 3) is called the quotient. The number to be divided, 15 , is called the dividend. The number you divide by, 5 , is called the divisor.

Example 6 Divide: $84 \div 6$.

divisor \begin{tabular}{cc}

14
64
-
$\frac{6}{24}$

\& \leftarrow dividend

$\frac{24}{0}$ \& \leftarrow remainder
\end{tabular}

Example 7 Divide: $115 \div 7$.

The remainder (when not 0) is usually written in one of two ways: with an " r " preceding it or with the remainder written over the divisor as a fraction, as shown in Example 8. (Fractions are discussed in Unit 1B.)

Example 8 Divide: $534 \div 24$.

$$
\begin{aligned}
& \frac{22}{} \text { r } 6 \text { or } 22 \frac{6}{24} \quad \text { This quotient may be written } 22 \mathrm{r} 6 \text { or } 22 \frac{6}{24} \text {. } \\
& \frac{48}{534} \\
& \frac{48}{6}
\end{aligned}
$$

Example 9 Ohm's law states that in a simple electrical circuit, the current I (measured in amps, A) equals the voltage E (measured in volts, V) divided by the resistance R (measured in ohms, Ω). Find the current in the circuit of Figure 1.7.

The current $I=\frac{E}{R}=\frac{110}{22}=5 \mathrm{~A}$.
figure 1.7

Example 10 A 16 -row corn planter costs $\$ 118,500$. It has a 10 -year life and a salvage value of $\$ 10,000$. What is the annual depreciation? (Use the straight-line depreciation method.)

The straight-line depreciation method means that the difference between the cost and the salvage value is divided evenly over the life of the item. In this case, the difference between the cost and the salvage value is

$\$ 118,500$	cost
$-\$ 10,000$	salvage
$\$ 108,500$	difference

This difference divided by 10 , the life of the item, is $\$ 10,850$. This is the annual depreciation.

Example 11 Restaurants purchase potatoes to use for baked potatoes. The potatoes are often called bakers

 and can come in cases containing 90, 120, and so on, potatoes. If 3 cases of bakers with 90 potatoes per case are ordered plus 2 cases of bakers with 120 potatoes per case, how many total individual bakers are ordered?$$
\begin{aligned}
& 3 \text { cases } \times 90 \text { potatoes } / \text { case }=270 \text { potatoes } \\
& 2 \text { cases } \times 120 \text { potatoes } / \text { case }=\underline{240 \text { potatoes }} \\
& \text { Total }
\end{aligned}
$$

Using a Scientific Calculator

Use of a scientific calculator is integrated throughout this text. To demonstrate how to use a common scientific calculator, we show which keys to use and the order in which they are pushed. We have chosen to illustrate the most common types of algebraic logic calculators. Yours may differ. If so, consult your manual.

NOTE: We will always assume that your calculator is cleared before you begin any calculation.

Use a calculator to add, subtract, multiply, and divide as shown in the following examples.

Example 12 Add: 9463

125
9
80

9677

The sum is 9677.

The result is 1872 .

Example 14 Multiply: 125×68.

8500
The product is 8500 .

Example 15 Divide: $8700 \div 15$.

580

The quotient is 580 .

NOTE: Your instructor will indicate which exercises should be completed using a calculator.

EXERCISES 1.1

Add:

1. $832+9+56+2358$
2. $324+973+66+9430$
3. 384

291
147
632
217
9
123
5. $197+1072+10,877+15,532+768,098$
6. $160,000+19,000+4,160,000+506,000$

Subtract and check:

7. 7561
2397
8. 4000
702
9. $98,405-72,397$
10. $417,286-287,156$
11. 4000
12. 60,000

1180 9,876

Find the total resistance in each series circuit:
13.

14.

15. Approximately how many studs are needed for the exterior walls in the building shown in Illustration 1 ? (See Example 4.)

16. A pipe 24 ft long is cut into four pieces: the first 4 ft long, the second 5 ft long, and the third 7 ft long. What is the length of the remaining piece? (Assume no waste from cutting.)
17. A welder needs to weld together pipes of lengths $10 \mathrm{ft}, 15 \mathrm{ft}$, and 14 ft . What is the total length of the new pipe?
18. A welder ordered a $125-\mathrm{ft}^{3}$ cylinder of argon gas, a shielding gas for TIG welding. After a few days, only $78 \mathrm{ft}^{3}$ remained. How much argon was used?
19. Find the total input and output (I-O) in cubic centimetres $\left(\mathrm{cm}^{3}\right)^{*}$ for a patient. By how much does the input of fluids exceed the output?

```
Input: }300\mp@subsup{\textrm{cm}}{}{3},550\mp@subsup{\textrm{cm}}{}{3},150\mp@subsup{\textrm{cm}}{}{3},75\mp@subsup{\textrm{cm}}{}{3}\mathrm{ ,
150 cm}\mp@subsup{}{3}{3},450\mp@subsup{\textrm{cm}}{}{3},250\mp@subsup{\textrm{cm}}{}{3
Output: }325\mp@subsup{\textrm{cm}}{}{3},150\mp@subsup{\textrm{cm}}{}{3},525\mp@subsup{\textrm{cm}}{}{3},250\mp@subsup{\textrm{cm}}{}{3}\mathrm{ ,
175 cm}\mp@subsup{}{}{3
```

20. ∇_{A} A student pilot must complete 40 h of total flight time as required for her private pilot certificate. She had already entered 31 h of flight time in her logbook. Monday she logged another 2 h , then Wednesday she logged another 3 h , and Friday she logged yet another 2 h . If she can fly 3 h more on Saturday, will she have enough total time as required for the certificate?

Multiply:

21. 567
22. 8374
48
$\underline{203}$
23. $71,263 \times 255$
24. 1520×320
25. 6800×5200
26. $30,010 \times 4080$
*Although cm^{3} is the "official" metric abbreviation for cubic centimetres and will be used throughout this book, some readers may be more familiar with the abbreviation "cc," which is still used in some medical and allied health areas.

Divide (use the remainder form with r):
27. $4 \longdiv { 7 2 3 6 }$
28. $5 \longdiv { 3 0 8 , 7 3 6 }$
29. $4668 \div 12$
30. $15,648 \div 36$
31. $67,560 \div 80$
32. $\frac{188,000}{120}$
33. $\$$ An automobile uses gasoline at the rate of 31 miles per gallon (mi/gal or mpg) and has a 16 -gallon tank. How far can it travel on one tank of gas?
34. An automobile uses gasoline at a rate of 12 kilometres per litre (km / L) and has a 65 -litre tank. How far can it travel on one tank of gas?
35. A four-cylinder engine has a total displacement of $1300 \mathrm{~cm}^{3}$. Find the displacement of each piston.
36. $\$$ An automobile travels 1274 mi and uses 49 gal of gasoline. Find its mileage in miles per gallon.
37. An automobile travels 2340 km and uses 180 L of gasoline. Find its fuel consumption in kilometres per litre.
38. To replace some damaged ductwork, 20 linear feet of 8 -in. $\times 16$-in. duct is needed. The cost is $\$ 13$ per 4 linear feet. What is the cost of replacement?
39. $\$$ The bill for a new transmission was received. The total cost for labor was $\$ 516$. If the car was serviced for 6 h , find the cost of labor per hour.
40. The cost for a set of four tires is $\$ 508$. What is the cost of each tire?
41. X_{A} small Cessna aircraft has enough fuel to fly for 4 h . If the aircraft cruises at a ground speed of 125 miles per hour (mi / h or mph), how many miles can the aircraft fly in the 4 h ?
42. χ_{Δ} A small plane takes off and climbs at a rate of $500 \mathrm{ft} / \mathrm{min}$. If the plane levels off after 15 min , how high is the plane?
43. … Inventory shows the following lengths of 3-inch steel pipe:

> 5 pieces 18 ft long
> 42 pieces 15 ft long
> 158 pieces 12 ft long
> 105 pieces 10 ft long
> 79 pieces 8 ft long
> 87 pieces 6 ft long

What is the total linear feet of pipe in inventory?
44. An order of lumber contains 36 boards 12 ft long, 28 boards 10 ft long, 36 boards 8 ft long, and 12 boards 16 ft long. How many boards are contained in the order? How many linear feet of lumber are contained in the order?

